

Forum Editorial

Redox Control of Growth Factor Signaling in Heart, Lung, and Circulation

YUICHIRO J. SUZUKI¹ and KATHY K. GRIENDLING²

GRWTH FACTORS play important roles in the pathophysiology of the heart, lung, and circulation. In the heart, factors such as angiotensin II and endothelin-1 have been shown to induce cardiac muscle cell hypertrophy, which may result in heart failure (23). These factors, as well as others, also induce hypertrophy of the vessel wall, which may be important in the development of hypertension and atherosclerosis (2). Growth factors also play essential roles in lung diseases such as pulmonary hypertension, chronic obstructive pulmonary disease, and asthma by increasing the mass of pulmonary artery and airway smooth muscle (12, 14). At the cellular level, growth factors promote hyperplasia, hypertrophy and survival of cardiac muscle, smooth muscle, endothelial, and epithelial cells. Understanding the signal transduction mechanisms utilized by growth factors should help to identify therapeutic targets for various cardiovascular and pulmonary diseases.

Regulation by reactive oxygen species (ROS) is a common element in the growth of cardiac and smooth muscle cells (18). One of the earliest demonstrations of a role for ROS in cardiovascular signaling was the observation that ROS are required for angiotensin II-mediated vascular smooth muscle cell hypertrophy (9). Since then, various growth factors have been shown to generate ROS which then serve as signaling molecules in systemic and pulmonary vascular and airway smooth muscle cells. This mechanism has been implicated in the development of systemic and pulmonary hypertension, atherosclerosis, and asthma (10, 11, 22). Furthermore, more recent experiments have provided evidence for a role of ROS in cardiac muscle cells, suggesting a role for redox regulation in the development of cardiac hypertrophy and failure (15, 20).

The sources and targets of ROS have been under intense investigation. NAD(P)H oxidases appear to be promising sources of ROS during growth factor signaling (4, 10, 11).

Various signaling molecules have been shown to be activated by ROS (19); however, it is not yet clear how specific signaling events can be elicited. Potentially important targets of ROS may include protein kinases and phosphatases (1, 8, 13, 21). In addition, ROS may induce cell growth signaling by modulating the levels of cellular glutathione (7).

In addition to the regulation of growth factor signal transduction by oxidants, growth factors may in turn affect oxidant-induced biological responses. For example, some growth factors can serve as cell survival mediators and protect cells against oxidative stress-induced apoptosis (17). Cardioprotective mechanisms may involve redox regulatory molecules such as thioredoxin (16). Boveris *et al.* (3) demonstrated that the angiotensin-converting enzyme inhibitor enalapril increases mitochondrial nitric oxide synthase activity, indicating that angiotensin II may regulate localized nitric oxide production. Estrogen, whose deficiency is associated with hypertension and angiotensin II-induced vasoconstriction, inhibits the hypoxia-induced increase in xanthine dehydrogenase/xanthine oxidase, a major reactive oxygen-producing enzyme (5).

Understanding the interactions between growth factor signaling and redox regulatory components is an important research area in cardiovascular/pulmonary physiology and pathology. The Forum on redox control of growth factor signaling in heart, lung, and circulation includes both review articles and original contributions that significantly expand our current understanding of the roles of ROS and redox reactions in growth factor signaling, as well as the regulation of redox biology by growth factors.

ABBREVIATION

ROS, reactive oxygen species.

¹Cell and Molecular Nutrition Program, The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Jean Mayer USDA Human Nutrition Research Center on Aging, and Pulmonary and Critical Care Division, Department of Medicine, Tufts University, Boston, MA 02111.

²Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322.

REFERENCES

- Aslan M and Özben T. Oxidants in receptor tyrosine kinase signal transduction pathways. *Antioxid Redox Signal* 5: 781–788, 2003.
- Berk BC. Vascular smooth muscle growth: autocrine growth mechanisms. *Physiol Rev* 81: 999–1030, 2001.
- Boveris A, D'Amico G, Lores-Arnai S, and Costa LE. Enalapril increases mitochondrial nitric oxide synthase activity in heart and liver. *Antioxid Redox Signal* 5: 691–697, 2003.
- Brandes RP. Role of NADPH oxidases in the control of vascular gene expression. *Antioxid Redox Signal* 5: 803–811, 2003.
- Budhiraja R, Kayyali US, Karamsetty M, Fogel M, Hill NS, Chalkley R, Finlay GA, and Hassoun PM. Estrogen modulates xanthine dehydrogenase/xanthine oxidase activity by a receptor-independent mechanism. *Antioxid Redox Signal* 5: 705–711, 2003.
- Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, and Lefer AM. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. *Proc Natl Acad Sci U S A* 92: 8031–8035, 1995.
- Day RM, Suzuki YJ, and Fanburg BL. Regulation of glutathione by oxidative stress in bovine pulmonary artery endothelial cells. *Antioxid Redox Signal* 5: 699–704, 2003.
- Frank GD and Eguchi S. Activation of tyrosine kinases by reactive oxygen species in vascular smooth muscle cells: significance and involvement of EGF receptor transactivation by angiotensin II. *Antioxid Redox Signal* 5: 771–780, 2003.
- Griendling KK, Minieri CA, Ollerenshaw JD, and Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. *Circ Res* 74: 1141–1148, 1994.
- Griendling KK, Sorescu D, and Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. *Circ Res* 86: 494–501, 2000.
- Hoidal JR, Brar SS, Sturrock AB, Sanders KA, Dinger B, Fidone S, and Kennedy TP. The role of endogenous NADPH oxidases in airway and pulmonary vascular smooth muscle function. *Antioxid Redox Signal* 5: 751–758, 2003.
- Jeffery TK and Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. *Pharmacol Ther* 92: 1–20, 2001.
- Niwa K, Inanami O, Yamamori T, Ohta T, Hamasu T, and Kuwabara M. Redox regulation of PI3K/Akt and p53 in bovine aortic endothelial cells exposed to hydrogen peroxide. *Antioxid Redox Signal* 5: 713–722, 2003.
- Panettieri RA Jr. Cellular and molecular mechanisms regulating airway smooth muscle proliferation and cell adhesion molecule expression. *Am J Respir Crit Care Med* 158: S133–S140, 1998.
- Sabri A, Hughie HH, and Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. *Antioxid Redox Signal* 5: 731–740, 2003.
- Shioji K, Nakamura H, Masutani H, and Yodoi J. Redox regulation by thioredoxin in cardiovascular diseases. *Antioxid Redox Signal* 5: 795–802, 2003.
- Suzuki YJ. Growth factor signaling for cardioprotection against oxidative stress-induced apoptosis. *Antioxid Redox Signal* 5: 741–749, 2003.
- Suzuki YJ and Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. *J Mol Cell Cardiol* 31: 345–353, 1999.
- Suzuki YJ, Forman HJ, and Sevanian A. Oxidants as stimulators of signal transduction. *Free Radic Biol Med* 22: 269–285, 1997.
- Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, and Komuro I. Oxidative stress-induced signal transduction pathways in cardiac myocytes: Involvement of ROS in heart diseases. *Antioxid Redox Signal* 5: 789–794, 2003.
- Usatyuk PV, Vepa S, Watkins T, He D, Parinandi NL, and Natarajan V. Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. *Antioxid Redox Signal* 5: 723–730, 2003.
- Wedgwood S and Black SM. Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension. *Antioxid Redox Signal* 5: 759–769, 2003.
- Yamazaki T, Komuro I, and Yazaki Y. Signalling pathways for cardiac hypertrophy. *Cell Signal* 10: 693–698, 1998.

Before 12/15/03, address reprint requests to:

Dr. Yuichiro J. Suzuki
Room 269, Jaharis Building
Tufts University
150 Harrison Avenue
Boston, MA 02111, U.S.A.

E-Mail: yuichiro.suzuki@tufts.edu

After 12/15/03, address reprint requests to:

Dr. Yuichiro J. Suzuki
Department of Pharmacology
Georgetown University Medical Center
SE401 Medical–Dental Building
3900 Reservoir Road NW
Washington, DC 20057, U.S.A.

This article has been cited by:

1. Frederick L. Crane, Hans Low. 2005. Plasma membrane redox and control of sirtuin. *AGE* **27**:2, 147-152. [[CrossRef](#)]
2. Yuichiro J. Suzuki , Hiroko Nagase , Kai Nie , Ah-Mee Park . 2005. Redox Control of Growth Factor Signaling: Recent Advances in Cardiovascular Medicine. *Antioxidants & Redox Signaling* **7**:5-6, 829-834. [[Abstract](#)] [[Full Text PDF](#)] [[Full Text PDF with Links](#)]